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i~ERiCAL iN~'ESTiGATiON OF THE INTERACTION OF A PLANE WAVE WITH A 

MULTiLAYERED CYLINDER IN THE GROUND 

K. Atabaev, N. Mamadaliev, 
R. K. Khanov, and Sh. D. Shamgunov 

UDC 539.3:624.131.52 

We consider the two-dimensional nonstationary interaction problem of an intense compres- 
sionai plane wave with an infinitely long multilayered deformable cylinder in the ground with 
account of elastic and plastic deformations. The theology of the medium and of the cylinder 
materials is described by the equations of deformation theory [i] of eiastopiastic bodies. 
in this case one uses as ground distortion function the generalized experimental dependence 
o i = oi(e, e i) (e, el, a, o i are the first and second invariants of the deformation and stress 
tensors), taking into account the effect of bulk deformation on the nature of plasticity con- 
ditions [2] ~ = ~ and simultaneously with the ground compression diagram o = o(~) 
satisfying in this specific case the sufficient conditions of uniqueness theorems and of 
minimum work of internal forces, obtained in [3] for a nonlinear medium. A numerical solu- 
tion of the problem for small and finite deformations of the system investigated is imple- 
mented by a difference method of the crossing type [4] in Lagrangian variables without ex- 
plicit separation of surface discontinuities. The approach mentioned has been used for nu- 
merical solution of two-dimensional collision problems of axially symmetric bodies with vari- 
ous obstacles, such as in [5-7]. 

In the present study specific numerical calculations of the problem are carried out for 
the case of streamlining of a wave of given intensity around two-layered and three-layered 
cylinders in the ground with account of wave diffraction by the external surface of the 
cylinder and of the nonlinearity (including iinearity) of its deformable material. We inves- 
tigate the effects of inelastic properties of the ground, physicomechanical characteristics, 
and the thickness of cylinder layers on the distributions of kinematic parameters and stresses 
in them. A comparison is carried out with the stress states of an elastic medium, generated 
during wave diffraction by a cylindrical cavity. We note that problems related to diffrac- 
tion of elastic waves by cavities, solids in the presence of elastic fillers, and shells of 
various shapes in an unbounded elastic or acoustic medium, were treated in [8-12]. 

The present study is an extension of [13, 14] in the study of characteristic features of 
plane wave interactions with a multiiayered cylinder in the ground and the behavior of its 
parameters under strong action. 

Let the front of the intense plane wave propagating in the ground at the moment of time 
t = 0 be adjacent to the external surface of a long two- or three-layered cylinder in the 
ground. For a given wave intensity it is necessary to determine for t > 0 the stress-defor- 
mation states and the kinematic parameters of the ground and of the cylinder with account of 
wave diffraction, the cylinder material deformability, and the elastoplastic deformations 
generated in this case. 

Since the problem is solved within the two-dimensional statement, the equations of motion 
of the ground and of the ring-shaped element of the cylinder are in the Lagrange variables 
(r,~) 

Andizhan. Moscow. Translated from Prikiadnaya Mekhanika i Tekhnicheskaya Fizika, No. 
5, pp. 154-164, September-October, 1992. Original article submitted January 16, 1990; revi- 
sion submitted August 30, 1991. 
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Our Ou~ 
- 

ur =- ~ aT ra~t ~ + c ~  r + ~ + u~ + 

+ ~ [o,.~-57,- + o ~  ~_ + ~ + + 

+ ar~ t - i -~Tr l  + % ~  r a~ 7 ' 

(1)  

where Po is the initial density, and Ur, u~ are the radial and angular displacements of the 
medium. 

According to deformation theory [i], the dependences between the stress and deformation 
components are written for all three media in the form 

a,. r --~8-}-2Gear, o~ = s @ 2G%~, a,.~ = Ge~, 

= a.e - -  (2/9)ai/ei, G = (t/3)ai/g~ 

( o ( r  o i ( ~ i )  o r  o i ( r  r  a r e  e x p e r i m e n t a l l y  d e t e r m i n e d  f u n c t i o n s ) .  

i n  t h e  c a s e  o f  f i n i t e  d e f o r m a t i o n s  we f i n d  f o r  ~,.~, %~ and  er~(s = e~r 

g2 

~r  = -37" + =2- 77 + \--87/ j '  

~ r  T o~o + "7-'a-~-+ , ( 3 )  

Srq~-- Or { 'r 8go + -~r \ r 8q~ + " 7 7 - \ - ~ - ~  + " 

i n  c a r r y i n g  o u t  t h e  c a l c u l a t i o n s  t h e  e x p e r i m e n t a l  g r o u n d  c u r v e s  o ( s )  and  o i ( s ,  e l ) ,  
o b t a i n e d  i n  [ i 5 ]  f o r  m i c r o g r a n u i a r  s a n d  w i t h  i n i t i a l  d e n s i t y  P0 = 164 k g ' s e c 2 / m  ~, w e r e  a p p r o x -  
i m a t e d  by  t h e  f o l l o w i n g  d e p e n d e n c e s :  f o r  l o a d i n g  

o(e) = 9,951(e/0,0~) 2 + 9,604(s/0,01) for  0 ~.~ e ~ l0  -2, 

~(e) = 1,6835(e/0,01) 2 + 26,t384(e/0,01) - -  8,2672 for  8 ~ t0-~'; ( 4 )  

for unloading 

. i  (~, ~,) = @ (~i) + [~ (~) - 251 [og (~,) - @ (~0] /~5,  

a~ (ei) = - -  t4,997 (ei,'0,0t) 2 + 35,037 (ei/0,01), 

o~(ei) = - -  I0,218(ei/0,01) 2 + 23,035(eJ0,0t)  for  0 ~ e < ~  l0  -~,  

(  -o,o31 27,18( ,-o,o  
oi(ei)  = 2 0 , 0 6 \  0,02 ] k T / - -  . 0,02 ] X  

/ei - 0,04 ~ / e l -  0,0t ~ - 0 , 0 3  
)< 

t 

o, (~0 -- 12,82 ~ o---o-;b-~-~, j ~ j  - ~ 7 , 2 3 I ~ )  ~ o---07v-~ + 

( - o,o,  I - o,o3 
+ ~ 8 , 8 4 \ ~ ] \ ~ 1  for  1 0 - 2 < : e ~ 3 , 2 7 . t 0  -~, 

o~ (el) = 27,688656 + t70,2108(e,  - -  3,27. t0 -2 ) ,  

o, (8i) ~17,7001 + t 7 0 , 2 1 0 8 ( e i - -  3,27.10-2);  

(e)  = a e  2 + be + e 

(~) = d (~ - -  **)~ 

for  2t-- (** + %) < e < %, 

1 
e~ ~* ~<* ~< -~ (e* + *o), 

k37 
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(h (8, e 0 = a 3(  g, 8 ~ ) ( ~  i - -  e~) for 

~ (~, 8o = ~3 (8, d ) [(8o3 - 8 : ] 2  + ,~ (8)[8~ - (~)3~ 

~(~, 8o = ~(8, 8~ + ~(~, ~~ + o~(8~, ~o) 

a 4 = ~  

a = o (%) - -  (% --  0,58, - -  0,5e*) o' (%) b = o '  (%) -- 2a%, 

(~o - ~,) (~ - %) 

d --- ( a s [  + b / 2 ) / ( ~  - -  ~*), c = d (8~ - -  s , )2  _ as~ - -  bs~, 

8~ = (8* + 86)/2, 8* = 0,3880; 

C < 8~ <~ (803, 

f o ~  (803 < 8 < (~4~, 

fo~ (~0:  < 8~ ~< 8 ~ 

~i(8, sO) 
~ : ~ ( 8 ,  ~0 ) - -  ~ ( 8 0 ) ~ - -  ~8  o, 

o ~(~ ,  ~o) _ .~( , ,  ~o) 
(~i)~:e~ ~ 0 ~ ( ~ ) '  a i :  ~0 ' 

(~d3 = (802 + % (~) , 

, 26~ 

(6)  

t ; )  

8~ = (~)3 ,~ (~), ~3 = - r  ~* (~) / [ (~03  - 8~ ], 

#~(8)  = 2 3 0 3 , 8  + 8 0 [ a ( 8 )  - -  2 5 ] .  

Here E0, ~ are the values of bulk deformation and the deformation intensity at the loading 

branches at the start of unloading, the functions o(~0) , ~ and a~(8, e~), ~(8, a~) are 

calculated, respectively, on the basis of Eqs. (4) and (5), which are valid for loading of 

the medium, ~, ~ are the residual deformation and the deformation intensity, (el)2, (ei)s 

are the deformation intensity values at the edges of the intermediate portion of the separa- 
tion loading branch of the diagram o i = oi(E, el); and the prime denotes differentiation with 
respect to the argument, in Eqs. (6) and (7) the functions oi, o, ~i(~) have the dimension 
of kilogram per centimeter squared. 

As external layer of the ring-shaped element of the cylinder we took various porous mate- 
/ N  rials, for which the experimental dependence o = o~e) and the Poisson coefficient are known. 

These parameters make it possible to determine the generalized Lame coefficients i and G ap- 
pearing in (2) for loading and unloading of the external layer material of the cylinder. Thus, 
for foam epoxy with Pii = 20 kg'sec2/m 4 and v = 0.i the experimental curve o = o(~) was approxi- 
mated in the form of a second order polynomial with account of residual deformation: 

J 

For loading 

o(8) = 44t8 - -  5408  ~ f o r  0 ~-~ 8 ~-~ 0 ,4 ,  (8) 

O(S) = 86,4 -- 98 for 8>0,4; 

for unloading 

~(8) = a5(8 - 8*)" 

(~(8) = a5(83 - 8") ~ + % ( 8  - 83) 

a (e )  = a6s  ~ q-  b6s  + c6 

5 %  [ a '  
as = ~ ( % )  - -  r 

for 8* ~ 8 ~  63, 

for s < 8 ~ 8z, 

fort 8z < s ~ 8 0 , 

b~ = o '  (80 )  - -  2 a ~ o ,  

% = a (%) - -  a o ~  - -  b~%, ~2 = % - -  (~ ( % ) / ( 1 0 % ) ,  J = a (%) /10 ,  

~ = ~ + [~ - (ao~  + b ~  + ~o)]/*o, ~* = ~ - -  2~/r 
a 5 ---- t~o/[2(83 - -  8")], lpo ----- 5 0 0  kg/cm z 

f 

(e2, gs are the deformation values at the edges of the intermediate portion of the separation 
branch of the unloading diagram o = o(e), and the functions o(e0), o'(e 0) are found from Eq. 
~8) for ~ = g0). 

The internal layer of the cylinder was filled by reinforced concrete, which is assumed 
to be an elastic medium with Pb = 250 kg'sec2/m 4, v = 0.25 and a Young modulus of E = 3"i0 s 
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kg/cm ~. In the general case the method takes into account the eiastoplastic properties of 
the internal layer of the cylinder within deformation theory [i, 2]. 

The initial conditions of the problem are the ground parameters behind the front of the 
leading wave at the cylinder, which are assumed to be given functions of time. As boundary 
conditions we take the continuity conditions of the displacement, as well as of the normal and 
tangential stresses at the contact surfaces (r = Ri, i = I, 2) between the media, and absence 
of stresses on the internal surface (r = r 0) of the cylinder. 

To solve the problem we use the finite difference method [4]. For this purpose the inves- 
tigated three-layered region with a conditional external boundary Ra = (5-I0)R2, being a 
rectangle r 0 ! r ! R3, 0 ! ~! ~, is covered by a grid with radial Ar l, 5r=, Ar 3 and polar 

angle A~ sizes including the satisfaction of stability conditions of the difference scheme 
(a0At)/Ar < i/2 (a 0 is the rate of propation of the elastic wave). Similarly to the method 
of [9], we assume that near the boundary r = R 3 and in the region of absence of wave reflec- 
tion from the cylinder the ground motion is determined by the plane wave parameters of given 
intensity p(t). At the front of this wave relative to the horizontal direction Ox, coincid- 
ing with the direction of Or at ~ = 0, we have 

p(D -- u,) =: poD, ~ = --poDu~ (i0) 

(D, p, u t are the front velocity of the shock wave, the density, and the mass velocity of the 
ground). 

Using for the stress Oxx a dependence of the type (2) with account of (5), we find 

t B 2 [o[ (~) - m(~ (~0- ~(~{)) x (il) 

X (~(~) + 25)1](i + ~ ) .  

Here e==~-f+7\~]; si=---3-e; e<0; and u is the ground displacement in the Ox direction. 

from approximate graphical analysis of (ii) and approximation of the corresponding curve for 
IOxxl < 200 kg/cm -~, 18u/SxI ! 0.06 with account of the condition IOxxl = p(t) for x = s(t) -- 

R2 - at, where a = D at t = 0, we obtain 

u~(z, t) = ~ ( x ,  t) = 2,8.to' 

To determine the front velocity of the plane wave we have for t = 0 from (I0) with account of 

P = p o / ( 1  + u x )  

]/ po a = D ( O ) =  po[ u~ (o) I for [ u x ( O ) l  : . [92i0 - -  0,00135p (0) ]. 

The ground displacement u(x, t) and velocity 6(x, t) behind the front of the planar shock wave 
in the region of absence of body effects are then represented, with account of (12), in the 
form 

X 

= ~o p ~---U-- + t 92i0-- 2,S.i@. ( 1 3 )  

- -  0,00135p ( ~  + t ) ]  dx; 

X 

2,8.10 ~ s(t) 

+ t dx + ~ p "' @ t 92 t0 - -0 ,00 t35p  a + t  , 

where the upper prime denotes differentiation with respect to time. Transition to a polar 
coordinate system (r, ~) with account of (13) and (14) gives 
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i D . U $ ,  

Xm = R3 cos  ~p >~ s(t (~)) 

u~(r, ~, t) = u(r cos  ~, t), u~(r, ~, t) = - - u ( r  cos  ~ ,  t ) s in  ~ ,  ' ,  - ,  

u~(r,  ~ ,  t) = u ( r  cos  % t) cos  ~ ,  u~(r ,  % t) = - - u ( r  cos  ~ ,  t) s i n  ~ .  

at the external conditional boundary r = R a of the region considered we obtain: for 

for x m < s(t(k)) 

u~(R3, % t) = u(R.~ cos  ~ ,  t) cos  % 

u~(R3, % t) = - -u (R~  cos  % t) s i n  % 

u~(R~, % t) ---- u(R3 cos  % t) cos  % 

u~(S3,  % t) = - - u ( R a  cos  % t) s i n  q3; 

u~(R3, % t) = u~(R, ,  % t) = ur(Ba, % t) = 

= u ~ ( R , ,  % t) = 0.  

The initial conditions of the problem for t < 0 are the co~noniy adopted equations for the 

d i sp lacemen ts ,  v e l o c i t i e s  ( 15 ) ,  and s~resses t z )  w i t h  account  o f  (13)  t i ~ )  and (3)  - ' = `  , , k ~ ) ,  

depending d i r e c t l y  on the  l o a d i n g  p r o f i l e  p ( ~ ) ( ~  = ( s ( t )  - R 2 + a t ) / a )  a t  t he  f r o n t  o f  t he  
plane wave. Since t = 0 is taken to be the time at which the planar shock wave has reached 
the surface of the cylinder at the point s(t) = x = R 2 (Fig. • ~ from (15) we find with 

account of (13) and (14) at t = 0 

u~(r, ~, O) = u~(r, % O) = O, 

u~ (r, % 0) - -  

6~(r ,  ~, O) - -  

a p (0) [9210 - -  0 , 0 0 i 3 5 p  (0)] cos % 
2,8.10 ~ 

a 
2,8. to 7 p (0) [9210 - -  0 , 0 0 1 3 5 p  (0)] s i n  % 

where r = R2/cos ~. Differentiating, further, the first two Eqs. of (15) with respect to r 
and ~, and substituting them into (3), we have expressions for e~, %~, 8r~ and g, r at t = 0, 
with whose use and that of the dependences (4), (5} one obtains from (2) at t = 0 equations 

for Orr, o~, or~ as functions of r and T (they are not given due to their unwieldiness). 

Due to the symmetry with respect to the plane ~ = 0 the solution of the problem is 
determined for angles 0 ~ ~ ,  while for T = 0 and ~ = ~ one has the conditions 
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To calculate values of partial derivatives of the functions considered in (i) with res- 
pect to r and ~ in interior points of the region one uses a difference scheme of the "spatial 
cross" type with second order accuracy approximations, in this case it is assumed that at 
the moments of time t = kAt (k is a positive integer) one knows the displacements Ur, um, 
including the stress components, while at the moments of time t = k - i/2)At one knows the 
velocities Ur, um �9 From the known ur, um one calculates the first part of system (i) and 
one finds the acceleration values ~, ~m for the points indicated at t = kAt. Following the 
calculation of the acceleration values one determined the velocities t = (k + ~iz)an, at the 
moments of time t = (k + • and then the displacements u~, um at t = (k + i)&t. The 
calculation is concluded at this next cycle. 

To "smear" the jumps and "quench" the oscillations one stipulates pseudostresses with a 
synthetic viscosity in the form 

4 .  = ~ =  karl '  ~  (16) 

Here the coefficients kl, k 2 are determined directly by a numerical experiment. 

A test of the numerical scheme developed was carried out on the test case of interaction 
of a nonstationary plane wave with a cylindrical plane in an elastic medium [9, I0]. In the 
calculations the loading behind the front of the wave streamlining the cylinder is given in 
the form of steps, "smeared" into two phases in time. The calculation results are shown in 
Fig. ib, where i and 2 are curves referring to [9] and [i0], and 3 are results obtained by 
the given method. Comparison of these results shows that the results of the method suggested 
and those of earlier studies by other authors are in quite satisfactory agreement. Conse- 
quently, the use of the suggested difference method to describe two-dimensional wave pro- 
cesses is valid. 
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Computer calculations have been further carried out for the case in which the given pres- 
sure p(t) in the ground behind the front of the plane wave varies by the law 

p (t) = o,ul8P(~ . . . . .  [(t ~ 0.03) (t - -  0,0G) qo - -  2t (t - -  0,06) q~ + t (t - -  0,03~ q.,l, ( 1 7 )  

p(O) = 100 kg/cmZ; qo = l ,  ql = 0,18, q2 = O, i ,  

w h e r e  t h e  g e o m e t r i c  s i z e s  o f  t h e  c y l i n d e r  a n d  o f  t h e  g r o u n d  a r e :  r 0 = 2 m, R1 = 4 m, R2 = 5 m, 
R 3 = 35 m. in this case we select the foliowing original data for the cells sizes and for 
the step in time: 

A r l = 0 , 2  m, A r 2 = 0 , t  m., 

Ar3 - -  0,5 m; Arp ~ n /30 ,  

At = 2 �9 t0  -5 s e c .  

( 18 )  
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ki8) the step in time At was selected from the condition &tab/~r < i/2 where &r I is the 
step in r in the internal layer of the cylinder, and a b is the propagation velocity of the 
elastic longitudinal wave in reinforced concrete. 

Several calculation results in the form of stress plots 6~r: ~ and mass velocities 
u r are provided in Figs. 2-7; while Figs. 2-6 correspond to elastopiastie deformation of the 
ground with account of k )-k7) and of the external layer of the cylinder, consisting of foam 
epoxy, Fig. 7 corresponds to the linearly elastic three-layer system. Here~ however, on the 
basis of handling results of a series of numerical experiments it must be stressed that the 
synthetic viscosity (16) and further reduction of the coordinate grid do not affect substan- 
tially the stress distribution, and therefore in all calculations the coefficients k I and k 2 
in (16) were taken to be zero. 

Analysis of the curves of Figs. 2, 3, and 7 shows that the stress Orr in the cross sec- 
tions r = 5, 4, 2.3 acquires the largest value in the elastoplastie case in comparison with 
the elastic case. This is related to the fact that in bulk compression the ground displays a 
shock diagram, leading to an enhanced stress. 

in the leading part of the body, i.e., for ~ =0, the stress distribution Orr as a func- 
tion of time t does not differ substantially at r = 5 and 4 m and is compressive, in the 
cross sections r = 2, 3 m inside the reinforced concrete of the ring-shaped element of the 
cylinder arr is obtained by time alternating and somewhat decreased values than at the bound- 

ary r = 4 m between the cylinder layers. 

In the rear part of the cylinder, i.e., at ~ = ~ with account of perturbation lag and 
some attenuation in wave intensity the stress amplitude obtained is somewhat smaller than 
for ~ = O. 

The elastic and elastoplastic annular stress ~ at various points of the cylinder 
varies substantially and nonlineariy as a function of t for ~ = O, x (Figs. 3~ 7), while 
for r = 2, 3 m the eiastoplastic stress o~ changes sign and has the largest value in com- 
parison with the corresponding elastic stress. 

We note that in all cases the behavior of the curves err and a~ has an oscillatory 

nature as a function of time (Figs. 2, 3, 7). This is due to the presence of different 
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cylinder materials and wave diffraction processes by the media contact boundaries. Thus, the 

investigation of the dynamic behavior of the elastic stress Orr for r = 5 m, ~ = 0 (Fig. 7) 
shows that at the initial phase of wave interaction with a two-layered cylinder, at t < 10 -2 
sec and following a half-period oscillation of the curve Orr approximately equal to the trans- 
mission time of the elastic longitudinal wave through the two widths of the external layers 
of the cylinder, consisting of foam epoxy, the propagation velocity of the elastic longitu- 
dinal wave in the foam epoxy is a b = i000 m/sec. 

Besides, for a homogeneous cylinder the oscillations mentioned above do not lead to 
other effects, and the maxim~marr value at the cylinder is somewhat enhanced. 

investigating the curve behavior for the velocity Ur for elastic (Fig. 4, curves i) and 
elastopiastic ' Lcurves 2) medium deformation, we note that ur reaches its maximum value when 
irreversible processes are taken into account. In this case, depending on t the Ur curve has 
at r = 5 m, ~ = 0 a change in sign and an attenuation in absolute value, while at r = 4 m, 

= 0 , ~ first ,increases, then decreases. 

Analyzing the nature of the distribution of the elastoplastic stress Orr over the angle 
~ , we note that at the moment of time t = 0.0i2 (0.020) sec, when the front of the planar 
shock wave streamlining around the cylinder covers a distance equal to x = 5.5 ~ ) m, for 
r = 5 and 4 m and in the interval 0<~<~/2 it varies by the law of damPed oscillations, 
while in the interval x/2~<~ one observes in the Orr profile a tendency to increase. 
While the curves for ~rr, ~mm, or~ at r = 2, 3 m, as well as the curves for the tangential 

stress ~rm at r = 5 and 4 m are alternating as a function of ~ are nonsymmetric with respect 
to the point ~ = ~/2 . Consequently, the distribution of the normal and the tangential 
stresses at the external surface of the cylinder has a nonuniform nature as a function of 
the polar angle ~. 

Since one solves the two-dimensional nonstationary problem, for prognosis of the pos- 
sible nature of breakdown of the cylinder material and to estimate the expansion stresses it 
is advisable to study the stress distribution in the bulk of a two-layered cylinder and 
around it at fixed moments of time. in this connection we show in Figs. 5, 6, the distribu- 
tion curves of arr, o~ and arm over r in the range 2 m < r < 6 m for ~ = 3, 45, 90, 135, 

177 ~ , = tcurves 1-5) at the moments of time t 0.0108 and 0.0216 sec (Figs. 5 and 6), when the 
plane wave traverses, respectively, the radiusand diameter of the cylinder, and acts on it 
with a load decreasing monotonically with time (17~. It is hence seen that the stress com- 
ponents Orr, ~, o,~ are basically alternating in a two-layered cylinder as a function of r. 

in the case of t = 0.0108 sec, near the internal surface of the cylinder at 2 m ~ r < 3 m, 
and for small ~Vaiues and ~ = 177 ~ (curves i, 2, 5) there occur regions of stretching 
stresses ~rr,i ~r~, o~. At the moment of time t = 0.0216 sec, when the wave traverses the 
diameter of the cylinder, for 2 m ! r < 3 m and r ~ (Fig. 6, curve i) the positive ampli- 
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tude of the circular stress ~ is somewhat larger than at t =,0.0108 sec, and theistretch- 
ing zone stresses Orr at ~ = 45 and i35 ~ (Fig. 6, curves 2, 4) are displaced inside (r ! 3 m) 

the cylindrical layer. Near the cylinder, at r > 5 m the stress as a function of r is subs- 
tantially reduced in the time interval under consideration. 

Further investigations and analysis of the results show that fittings of reinforced con- 
crete structures outside a protective padding of given thickness of a more compliant material 
make it possible to reduce the dynamic load amplitudes at the cylinder surface under the 
action of an intense seismic detonation wave. At the same time the level of load reduction 
at the annular element of a thick-walled cylinder depends substantially on the physicomechani- 
cal characteristics of the padding material and on its thickness. 

Thus, the variations in kinematic parameters and stress distributions at various fixed 
points of the cylinder as a function of time and spatial coordinates possess as a whole com- 
plex nonlinear wave properties, and for the prognosis of stress-deformation states of a two- 
layered cylinder under the action of an intense compressional wave it is necessary to take 
into account inelastic irreversible processes, generated both in the ground and in the pad- 
ding, making it possible to refine the results of the corresponding elastic problem of wave 
interaction with a rigid or deformable homogeneous cylinder in the ground. 

We note that a similar study has been carried out of the stress-deformation state of a 
three-layered cylinder under the action of an intense seismic detonation wave on it. 
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